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Isogeny-Based Cryptography Tutorial

1 Introduction

In this tutorial, we provide a gentle introduction to supersingular isogeny-based
cryptography. By the end of this document, the reader will have obtained a high-
level understanding of the math behind this promising area of cryptography and will
have surveyed the most important key establishment primitive based on isogeny-
based cryptography.

More specifically, we organized this tutorial as follows. We will start with a short
description of elliptic curves and their scalar multiplication, which forms the foun-
dation of Elliptic Curve Diffie-Hellman (ECDH). Those comfortable with the basics
of ECDH should feel free to skip to Section 4, which covers the definition of an
isogeny and how an isogeny can be determined via its kernel. We will then discuss
how to randomly choose kernels, and how to use the resulting isogenies to replace
the scalar multiplication in ECDH to get a new quantum-safe key establishment
algorithm called Supersingular Isogeny-Based Diffie-Hellman (SIDH).

2 Elliptic Curves

Historically, one of the most important problems in mathematics was to describe
solutions to polynomial equations. One standard problem is to find points on a
curve in a plane described by a polynomial f(z,y).

Definition 2.1. By curve we will always mean the solutions of a polynomial equation
in two variables. A curve of degree d will mean that the highest degree of any term
in the polynomial has degree d.

If the degree of this polynomial is one, then the curve is a line and finding the
points on a line is a trivial problem. Solving the degree two case involves investi-
gating conic sections, and this problem has a well-known solution.

The degree three case, however, results in some remarkably complex and in-
teresting mathematics. This mathematics gives rise to hard problems that are at
the heart of well-known classical and quantum-safe cryptographic algorithms. It is
these degree three polynomials that we will be discussing in this document.

Definition 2.2. An elliptic curve is a curve defined by an equation of the form 32 =
23 + ax + b, where 4a® + 27b* # 0.

The condition 4a®4-27b* # 0 guarantees that there are no troublesome (singular)
points like those given in Figure 1.
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Figure 1: A cusp and a point of self-intersection

Lemma 2.3. Given an elliptic curve y* = 23 + ax + b, where a and b are real numbers,
there are either one or three real roots of 2> + az + b = 0.

The two cases covered in Lemma 2.3 are illustrated in Figure 2.

0.5 1.5

[\

Figure 2: Elliptic curves with one and three real roots

Given two points on an elliptic curve, we can get a third point on the curve in
a natural way, which we will call the sum of these two points. To understand this
“addition” of points it is important to understand the way lines and elliptic curves
intersect. Let us begin with the most common case.

Case 1: Suppose we are given two different points P = (x1,y1) and Q = (z2,92) on
an elliptic curve E, where the line between them is non-vertical and intersects F at
a distinct third point. Let R = (z3,y3) denote the third intersection point between
the line and E. We define the addition P + @ to be the reflection of R with respect
to the z-axis, namely, (z3, —y3)—see Figure 3.
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Figure 3: Case 1

The next case covers the situation where we want to double a point, or in other
words define P + P.

Case 2: Choose P = (x1,y;) on an elliptic curve E. The tangent line of E at
P is the line that passes through P in a way where the line has the same slope as
the curve FE at the point P—see Figure 4. It is well-known that if this tangent line
is non-vertical, then it will intersect E at one other point R = (x3,y3). We define

P + P = (x3, —y3)—see Figure 4.
%

P+ P

Figure 4. Case 2

If the line between two different points does not intersect at a third point, then it
can be shown that the line is a tangent line to one of these two points, as is shown
in Figure 5. This happens in the final case involving a non-vertical line.

Case 3: Suppose we are given two different points P = (z1,y;) and @ = (2, y2)
on an elliptic curve E, where the line between them is non-vertical and intersects £
at the point P. This happens when the line is tangent to £ at P. For mathematical
reasons, we think of the line being a tangent line of £ at P as implying that the line
and E have a double intersection at P, much in the same way that as we think of
y = x? as having a double root at (0, 0). Let R = P, (the “third" point of intersection).
We define P + @ = (z1, —y1)—see Figure 5.
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Figure 5: Case 3

The above cases cover all the situations where the line between two points (or
the tangent line at a point) is non-vertical. We will briefly discuss the situation where
the line is vertical.

Case 4: The case where the line is vertical is taken care of by introducing a
special point O to the points on the elliptic curve, which is called the identity of E
(or the point at infinity of E) and satisfies the property P + O = P for any point
P € E. This extra point does not lie in the plane. We can think of this special
point as being like 0, in the sense that « + 0 = z, for any real number z. The only
time when the line between two points is vertical is if the points have the same z-
coordinate. Thus, we define (z1,y;) + (1, —y;1) = O. For this reason, if P = (x1, 1),
then —P = (x1, —y;). This is depicted in Figure 6.

O=P+(-P)

_
; u\ 4

Figure 6: Case 4

This addition operation is sometimes referred to as being defined by the “chord
and tangent rule." The main take-away is that there is a simple method to add points
on an elliptic curve that covers all the possible cases. Note that we can easily find
explicit formulas to compute addition of points in Cases 1to 4. For more informa-
tion, see [6, Section 1.4] or [5, Section 3.2].

Definition 2.4. Given a point P on an elliptic curve and a natural number n, we have
a notion of (scalar) multiplication by n, which is simply summing P a total of n times
and is denoted by [n] - P. In other words

[n]-P=P+---+P.
———

n
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Additionally, we let [0] - P = O and [—n] - P = [n] - (—P). For a fixed natural number
n and elliptic curve E, we call the map [n] - £ — E that maps a point P to the point
[n] - P the scalar multiplication by n map.

Instead of working with elliptic curves whose points have real or rational z and y
values, classical elliptic curve cryptography assumes the points on the elliptic curve
have x and y values that are in a finite space I, for some prime p. (The coordinates
a and b that define the elliptic curve y*> = 2® + ax + b are also in F,.) We can think
of F, as simply being the numbers 0,1, ..., p — 1 where addition and multiplication
is done modulo p. Recall, two numbers are the same modulo p if their difference is
divisible by p.

Example 2.5. If we are working in F, then
3+2-5=3+10=13=6.

The last step works because 13 is equal to 6 modulo 7.

The formulas that describe how to add points on the elliptic curves when the
points are real numbers still hold when we are working with arithmetic modulo
a prime p. Using this we can now explain Elliptic Curve Diffie-Hellman (ECDH), a
prevalent classical key establishment algorithm.

3 Elliptic Curve Diffie-Hellman (ECDH)

First presented in 1976, the Diffie-Hellman key exchange is one of the earliest prac-
tical examples of public key cryptography and allows two parties to securely estab-
lish a shared secret over an insecure channel. Initially proposed in terms of natural
numbers and exponents, we now present its more modern elliptic curve variant
which relies upon the scalar multiplication by n map.

Using the scalar multiplication by » map—where the points have = and y coor-
dinates in IF,—we will now describe the ECDH algorithm.

Public Parameters: An elliptic curve E defined over F, for some prime p, and a point
P on the elliptic curve (with some nice properties).

Key Generation: Alice begins by choosing a random number n4, and calculates
[na] - P. Her private/public key pair is then (n4, [n4] - P). Similarly, Bob begins by
choosing a random number n g, and calculates [ng] - P. His private/public key pair
is (ng, [ng] - P). Alice and Bob exchange public keys [n4] - P and [np] - P.

Shared Secret: Both parties can now calculate a shared secret, namely [nang| - P.
Using the point [np] - P that she receives from Bob, Alice computes [n4] - ([ng] - P).
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Similarly, using the point [n4] - P that he receives from Alice, Bob computes [np] -
([na] - P). Since the following equation holds:

[nal - ([np] - P) = [nanp] - P = [npnal - P = [np] - ([nal - P),

we see they have a shared secret.

Bob

Private Key: Choose n 4. Private Key: Choose np.
Public Key: [n4] - P nal P ng]- P Public Key: [ng] - P
’ Shared Secret: [n4] - ([ng] - P) ‘ ’ Shared Secret: [ng] - ([na] - P) ‘

Figure 7: ECDH

The ECDH algorithm is summarized in Figure 7. We can also use a mathematical
representation to describe ECDH—see Figure 8 . Alice calculates the arrows in red,
and Bob calculates the arrows in blue. In Figure 8, the dotted lines represent the
parties exchanging the points [n,4] - P and [ng] - P.

[na] - P
P / A x nang) - P
R[ ‘o /

Figure 8: ECDH

The security of ECDH is based on the hardness of the following problem:

Definition 3.1. The elliptic curve discrete log problem (ECDLP) is the problem of
finding a number n such that [n] - @ = P, for given points P and @ on an elliptic
curve E over IF,, provided that P is indeed a multiple of Q.

For elliptic curves over F, where p and n are large, ECDLP is considered to be an
intractably hard problem even with access to today’s most powerful supercomput-
ers. Thus, revealing P and Alice’s public key [n4] - P, does not reveal Alice’s private
key n4. Similarly, revealing P and Bob’s public key [np] - P, does not reveal Bob's
private key np. This means that given P, [n4] - P, and [np] - P, it is computationally
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infeasible to calculate the shared secret [nang] - P. In this sense, the security of
ECDH relies on the hardness of ECDLP.

However, if an adversary had access to a large-scale quantum-computer, then
they could run an algorithm invented by the mathematician Peter Shor which could
efficiently solve ECDLP [4]. Although this type of large-scale quantum-computer is
still years away, due to its reliance on the hardness of ECDLP, ECDH is not a long-
term solution for internet security.

For this reason we introduce isogeny-based cryptography. As we will seeg, iso-
genies provide a means to create a quantum-safe key establishment algorithm. A
quantum-safe (or post-quantum) cryptographic algorithm is an algorithm that is be-
lieved to still be resistant to an adversary with access to a large-scale quantum
computer.

4 Isogenies

The rest of this document will focus on a quantum-safe key establishment algo-
rithm titled Supersingular Isogeny-Based Diffie-Hellman (SIDH). In this section we
provide a comparison between the mathematical objects used in ECDH and SIDH.
These are summarized in Table 1, and we will explain them as we proceed. In Sec-
tion 5 we will explain how to explicitly construct these objects. We will describe the
full SIDH protocol in Section 6.

ECDH SIDH
Quantum-Safe No Yes
Parameters Elliptic curve E over I, Point P (Supersingular) elliptic curve E over F,

Points Ps,Qa, Pp, QB
Private Key Scalar multiplication map [na] (or Isogeny ¢4 (or ¢5)

[n5])
Public Key Point [n4] - P (or [ng] - P) Image elliptic curve ¢ 4(£) (and two points)
(or ¢(F) and two points)
Shared Secret [n4] - [ng]- P = [ng] - [na] - P J(Wa(EB)) = j(¥p(Ea)) (¥4 and vy are de-
termined by the private keys)
Hard Problem Given P and [n] - P, find n Given E and ¢(E) (and two points), find ¢

Table 1: Comparison between ECDH and SIDH

Private Keys—Replacing Scalar Multiplications by Isogenies

We would like to have a protocol similar to ECDH that is quantum-safe. We can
think of scalar multiplication as the function of the base of ECDH—see Figure 8.
Unfortunately, a quantum enabled adversary could break cryptosystems based on
scalar multiplication (such as ECDH), and so we want to use more general functions
to construct a similar-looking algorithm that is also quantum-safe.
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We want these more general functions to map elliptic curves to elliptic curves.
However, unlike with scalar multiplication, the starting and ending elliptic curves of
these more general functions need not be the same. We will focus on the next type
of function, because these functions have the property that the image of an elliptic
curve is still an elliptic curve.

Definition 4.1. A rational map is a function between two curves where the coordi-
nate functions are each defined by a ratio of polynomials. More formally, a rational
map has the form

pi(2,y) pa(z, y)) |

o(P) = ¢(z,y) = (ql(az,y)’ ¢@(,y)

for any point P = (x,y) on the (domain) curve, where p;, ps, q1, g are polynomials
in two variables.

We also want our functions to preserve addition; in other words, if we add two
points before we apply the function, we get the same result as if we apply the func-
tion of the two points and then add them (that is, ¢(P + Q) = ¢(P) + ¢(Q)).

Definition 4.2. An isogeny ¢ between elliptic curves E, and E; is a rational map
¢ : Ey — E, that preserves addition (in technical terms, is a group homomorphism).

From now on, the only functions (or maps) that we will be dealing with will be
isogenies. Far from being mysterious, isogenies have been studied extensively. In
the following example we will see that we have already been working with them.

Example 4.3. For a fixed natural number n, the scalar multiplication by » map is an
isogeny. For example, multiplication by 2 for the elliptic curve y? = 2 + ax + b can
be described explicitly as follows:

[2] . (l’ )_ 24 —2ax2—8bz+a? (x84+5ax?+20b23 —5a°x2—4abr—a>+8b%)y
Y) = 4(z3+ax+b) 4(z3+ax+b)? :

This description of the scalar multiplication map [2] as a rational map follows from
the description given in Cases 1-4 in Section 2, as shown in [5]. Furthermore, the
multiplication by 2 map preserves addition, in the sense that

2l-(P+@)=1[2]-P+[2]-Q.

Therefore, since it can be defined in terms of rational maps and it preserves addi-
tion, the scalar multiplication by 2 map is an isogeny.

As we mentioned earlier, we would like to replace the scalar multiplication maps
in ECDH with more general isogenies. In particular, looking at Figure 8, we want to
replace the scalar multiplication map [n4] by isogenies ¢4 and ¢4, and we want to

© 2019 ISARA CORPORATION isara.com 9



Isogeny-Based Cryptography Tutorial

replace the scalar multiplication map [ng| by isogenies ¢ and ¢ 5. As we will see
later the isogenies 14 and v are equivalent to the isogenies ¢, and ¢p, respec-
tively, but they start from different curves. This is depicted in Figure 9.

Ea
% - \
E Eap = Epa
k‘
Ep

~ %
Figure 9: SIDH

Alice’s private key will essentially be the isogeny ¢, and Bob's private key will be
the isogeny ¢ 5. Alice’s private key will allow her to calculate ¢, and Bob’s private
key will allow him to calculate v 5.

Public Keys—Replacing Points by Image Curves

In ECDH, the public keys and shared secret are each a single point that is the
image under a scalar multiplication map. For example, Alice’s public key is the
point [n4] - P, which is the image of P under the scalar multiplication map [n4]. In
isogeny-based cryptography, the public keys and shared secret will no longer be a
single image point like in ECDH. The public keys will each include the image curve
under an isogeny map (the shared secret is a bit more involved, as we will see later).
For this reason it is important to know what the image of an isogeny looks like.

Proposition 4.4. Every isogeny maps an elliptic curve onto the image elliptic curve.
(In technical terms, every isogeny is surjective.)

Thus, as the image of an isogeny is itself an elliptic curve, in isogeny-based
cryptography, the public keys will be (image) elliptic curves—see Table 1. For a
technical reason that we will explain in Section 5, each party’s public key will also
include a couple of extra points.

Shared Secret—Replacing a Point by a j-Invariant

Recall that in ECDH, the two parties calculate exactly the same point ([n] - [ng]-
P = [ng]-[na]- P in Figure 8) to extract the shared secret. Unfortunately, in isogeny-
based cryptography, the image elliptic curves (E 4,3 and E 4 in Figure 9) that the two
parties calculate during the shared secret step might not be identical. Although the
image elliptic curves are different—in the sense that they are defined by different
polynomial equations—they are still structurally essentially the same. We can for-
malize this notion of “structurally identical" using the following definition.
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Definition 4.5. An isogeny between two elliptic curves ¢ : E, — E, is called an
isomorphism if it is a one-to-one function, (also known as an injection). Two elliptic
curves E, and E, are isomorphic if there is an isomorphism between them.

Remark 4.6. It is a well-known fact that two curves are isomorphic if and only if
they have an inverse function between them that is also an isogeny. This fact has
the consequence that two isomorphic elliptic curves have the same curve structure
and addition structure.

We now introduce a number, called the j-invariant, that we attach to each elliptic
curve. This number can be used to determine if two elliptic curves are isomorphic.

Definition 4.7. Given an elliptic curve E : y* = 2 + ax + b, the j-invariant of E is the
value

](E) _ _69124®

4a3427b2 "

Proposition 4.8. Two elliptic curve are isomorphic (over the algebraic closure) if and
only if they have the same j-invariant.

Although, the image elliptic curves (E 45 and Eg,) that the two parties calcu-
late in SIDH during the shared secret step might not be identical, they are always
isomorphic. Since Proposition 4.8 gives a simple way to detemine if two elliptic
curves are isomorphic, the shared secret in isogeny-based cryptography is chosen
to be the j-invariant of the image elliptic curves that the two parties calculate—see
Table 1 and Figure 10.

Ea

A VB
/ \
Eap = Epy

J(Eag) = j(Epa)

oB
v Pa

Ep

E

Figure 10: SIDH

Constructing the Private/Public Keypair

To use isogenies in a cryptographic algorithm, we need to be able to choose
random isogenies as private keys. Efficiently randomizing these private keys in
isogeny-based cryptography is done using the notion of the kernel of an isogeny,
which we will now introduce.
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Definition 4.9. The kernel of an isogeny ¢ : E; — E,, denoted ker ¢, is the set of
points that map to the identity of E;, namely,

ker¢p ={P | P € Ey and ¢(P) = O}.

Intuitively, we can think of the kernel as the inverse image of O.

As multiplication by n is a very important isogeny, we give a separate definition
for its kernel.

Definition 4.10. Let F be an elliptic curve. The set of points P (in the algebraic
closure) that lie on E which satisfy [n] - P = O is called the n-torsion group and is
denoted E[n].

By the definition of the scalar multiplication map, ker[n] = E[n].

As we will see in Figure 11, the kernel is important because it gives a simple way
to define maps that are not scalar multiplication. This is possible because of the
following lemma.

Lemma 4.11. If two isogenies have the same kernel, then the image curves are iso-
morphic.

The object in the following definition will allow Alice and Bob to generate isoge-
nies.

Definition 4.12. The set generated by points P, ..., P, on an elliptic curve F is the
set of points of the form [m]- P, +- - - 4 [my] - Py, for some integers my, ..., my. We
denote this set by (P4, ..., P;). Anisogeny whose kernel is generated by a single
point is called a cyclic isogeny.

To compute her SIDH key pair, Alice will first randomly choose a point R4 of a
certain “size" (technically, by “size" we mean order). Alice then calculates a cyclic
isogeny ¢, whose kernelis (R ,) using well-known explicit formulas [7, Section 12.3].
The point R4, or the associated isogeny ¢ 4, will be Alice’s private key. The image F4
of ¢4 will be part of Alice’s public key. See Figure 11 for a step-by-step description.

Private Key Public Key
Points —; Kernels — Cyclic Isogenies — Image Elliptic Curves
Ry — (Ra) —> ¢ withkergpy = (Rq) +—— Ea = 6u(E)

Figure 11: Generating Isogenies from a Point
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Bob also chooses arandom point Rz and uses this point to construct an isogeny
¢ Whose kernel is (Rg). The point R, or the associated isogeny ¢z, will be Bob’s
private key. The image E of ¢ will be part of Bob’s public key.

The question now remains, “how can we randomly choose a point?" To under-
stand the answer to this question it is important to understand the structure of the
points on the elliptic curve.

5 Explicit Constructions

In this section we would like to explicitly construct private/public key pairs and
shared secrets. This requires us to understand the set of points on an elliptic curve
which we can use to generate an isogeny.

Points in a Finite Field on an Elliptic Curve

Elliptic curve cryptography is done over finite spaces where we can perform
arithmetic. These spaces are called finite fields. The finite fields that are used in
this document are [, and F 2, where p is a prime number. Classical elliptic curve
cryptography generally uses F,, whereas quantum-safe isogeny-based cryptogra-
phy uses F ..

Recall that F,, is the set of integers modulo p, for some prime p. However, F,-
is not precisely the integers modulo p?. Intuitively, F,. is a type of 2-dimensional
version of F,. More explicitly, if p is congruent to 3 modulo 4, then we can think of
FF,- as simply being the numbers a + bi where i* = —1 and « and b are numbers in
0,1,...,p — 1 modulo p. (In isogeny-based cryptography we will always choose p
such that p = 3 (mod 4).) For example, in F;» we see that

(31)(3 + 2i) = 9i + 6(i*) = 9 +6(—1) = —6 4+ 9i = —6 + 2i.

Inisogeny-based cryptography, we will work with an elliptic curve E over F ., for
some prime p of the form p = 2¢3® — 1, where « and b are natural numbers. For
example, p = 237323 — 1 is one of the primes used in isogeny-based proposal to
the NIST quantum-safe cryptography project [3].

As we are interested in isogeny-based cryptography, we would like to have a
method to describe all the points with = and y values in F,2 on an elliptic curve E.
We actually only need to understand the points in £[2¢] and E[3"] whose x and y
values are in F,.. We will discuss the reason for picking points in these torsion
groups in Remark 5.1.

Both the sets F[2%] and E[3°] have a nice structure. In particular, there exist two
points P, and 4 on E that generate the set F[2%]. This means that all the points in
E[2%] can be described as [n] - P4+ [m]-Q4, for some n and m in F .. (Actually there
are many choices for P, and Q 4, so we just fix one choice as system parameters).
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Similarly, there are two points Pz and Qp on E that generate the set E[3"].
(Again, there are many choices for Pz and Q) 3, so we just fix one choice).

Constructing the Private/Public Keypair from a Seed

Suppose that Alice and Bob would like to use isogeny-based cryptography to
agree on a secret key. Recall from Figure 11 that Alice and Bob each wish to generate
an isogeny from a random point. In particular, Alice will choose a random seed
0 < ra < 2% Using this she will construct the (random) point R4y = Py + [ra] - Qa
in the torsion subgroup E[2%]. (Varying the m in description [n] - P4 + [m] - Q4 of a
general 2°-torsion point gives enough possible points that we do not need to vary n
as well.) Alice’s public key will include the image curve E 4 of the isogeny ¢, whose
kernel is (R4)—see Figure 12. Alice’s private key can be thought of as r4, or the
associated isogeny ¢ 4.

Private Key Public Key
/—/%
Seeds — Points — Kernels — Cyclic Isogenies —— Elliptic Curves
A — R4 — <RA> — 4 — Ey= (bA(E)

Figure 12: Generating Isogenies from a Seed

Similarly, Bob chooses a random seed r and uses it to compute a (random)
point Rz = Py + [rp] - @p. Bob's public key will include the image curve E of the
isogeny ¢ whose kernel is (Rp). Bob's private key can be thought of as r, or the
associated isogeny ¢p.

Remark 5.1. The kernels of the isogenies are of size 2¢ and 3°, because it is eas-
ier to calculate isogenies if the size of their kernels is a power of a small prime.
Additionally, for security we also want the sizes of Alice’'s and Bob’s kernels to be
relatively prime and reasonably large (there is a correspondence between the sizes
of a and b and the corresponding amount of security of the protocol).

Computing the Shared Secret

We want to construct a system of maps as illustrated in Figure 10, where j(E45) =
j(Ega). Inparticular, if we let ¢4 be the isogeny with kernel (¢5(R4)), then a simple
mathematical argument proves

Va0 ¢p = (Ra, Rp).
Similarly, if we let ¢z be the isogeny with kernel (¢4 (Rp)), then

Ypopa=(Ra,Rp).
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By Lemma 4.11, as ker ¢4 o ¢ = ker g o ¢4, this proves

Eap =vYa0¢p(E) = Ypops(E) = Epa.

Therefore, by Proposition 4.8, j(Eap) = j(Epa)—see Figure 10. Thus, if Alice and
Bob follow this procedure to create i, and v 3, respectively, then they will end up
with a shared secret, namely, j(F45) = j(Epa).

In order for Alice to construct v 4, she will need to know ¢z(R,4). For this reason,
in addition to Ep, Bob's public key also includes ¢g(P4), p5(Q4). More explicitly,
having been given ¢5(P4), ¢5(Q4), Alice can construct

¢p(Ra) = ¢5(Pa) + [ra] - 95(Qa).

Next Alice computes the image E 45 of the isogeny ¢4, whose kernel is (¢p(R4)).
Finally, she calculates the j-invariant of E 5, which will be the shared secret. This
process is summarized in Figure 13.

Bob'’s Public Key Using Alice’s Private Key Shared Secret
/—/H //R

Bob’s PublicKey — Point — Kernel — Isogeny — Elliptic Curve — j-Invariant

ép(Pa), #p(Pa) +— ¢p(Ra) +— (¢p(Ra)) +— ha — Eap —  j(EaB)

Figure 13: Generating a Shared Secret

Similarly, Alice’s public key is E4, ¢p4(Pg), p4(Qp). Having been given ¢4(Pg)
and ¢4(Qp), Bob can construct

¢a(Rp) = ¢a(Pp) + [rB] - 94(QB).

Next Bob computes the image Ez, of the isogeny ¢z whose kernel is (¢4(Rp)).
He calculates the j-invariant of 'z 4, which is the shared secret. This more detailed
protocol is depicted in Figure 14.

E4q _ker(y,
TA-Q« Pﬁ AA r(y 1;)<(¢A (>,
X B )4y
— PA [)"(6/‘ (Q
\@{@) A\ 5))
E 4,
ey ((A&)Q (Q A)ﬁ
@ partrad
Xe) ;(dDBK ’

8) ~ kefkﬂ)A)

Ep

Figure 14: SIDH

Eap = Epa
J(EaB) = j(EBa)

Combining these ideas we can describe the full SIDH protocol.
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6 Supersingular Isogeny Diffie—Hellman (SIDH)

In 2011, David Jao and Luca De Feo introduced SIDH, an isogeny-based version of
ECDH [2], [1]. To instantiate the protocol, first fix the elliptic curve E. This elliptic
curve is chosen so that the following algorithm is not susceptible to the same type
of quantum attack—like the one by Shor—that makes ECDH vulnerable. In particular,
we can choose E : y* = 2? + ax + b, defined in terms of a field F,. for some
prime p = 23” — 1 (although any supersingular elliptic curve would do—see [5] for
a definition of supersingular). To agree on a shared secret using SIDH, Alice and
Bob complete the following steps:

Public Parameters: A (supersingular) elliptic curve E : y? = 23 + ax + b defined in
terms of a field . for some prime p = 223" — 1, where @ and b are natural numbers.
A basis P4, Q4 of E[2%] and a basis Pg, Qp of E[3"].

Key Generation: Alice begins by choosing arandom number r 4, between 0 and 2¢—1.
She calculates the isogeny ¢4 whose kernel is generated by Ry = P4 + [ra] - Qa
using well-known explicit formulas [7, Section 12.3]. Alice then sends the image
curve E4 = ¢4(F) to Bob. She also sends ¢ 4(Pg) and ¢4(Q ), which will allow Bob
to construct his next map ¢ . Alice’s private key is the seed r 4, or equivalently, the
isogeny ¢ 4. Alice’s public key is (E4, p4(Pg), 04(QB)).

Similarly, Bob chooses a random number 5 between 0 and 3* — 1. He calculates
theisogeny ¢z whose kernelis generated by R = Pg+[rg]-Qp. Bob's private key is
the seed r, or equivalently, the isogeny ¢ 5. Bob’s publickeyis (Eg, ¢5(Pa4), ¢5(Q4)).

Shared Secret: Using the points that she receives from Bob, Alice computes an
isogeny ¢4, on Eg whose kernel is generated by ¢5(R4) = ¢p(Pa) +[ra] - ¢5(Qa).
Alice then calculates the j-invariant of the image curve E 5 = ¥ 4(Eg). Similarly,
using the points that he receives from Alice, Bob computes an isogeny ¢z on E4
whose kernel is generated by ¢4 (Rg) = ¢a(Pg) + [r5] - p4(@5). Bob then calcu-
lates the j-invariant of the image curve Egy = ¢p(E4). Since E,p and Ep, are
isomorphic, they have the same j-invariant. More specifically,

J(¥B(Ea)) = j(Epa) = j(Eag) = j(¥a(EB)).

Thus, they can use the j-invariants as a shared secret.

Figures 15 summarizes SIDH. However, we can also think of it more mathemat-
ically, see Figure 14. These diagrams are the analogue of Figure 7 and Figure 8,
respectively. In both figures, Alice calculates the arrows in red, and Bob calculates
the arrows in blue. In Figure 9, the dotted lines represent the parties exchanging

the public keys ¢4(E), 9a(Pg), a(@p) and ¢p(E), ¢p(Pa), 5(Qa).
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3ob

Private Key: Private Key:
Choose 0 < 14 < 29. Choose 0 < rp < 3b.
Public Key: Public Key:
Ea=¢a(E),¢a(PB),¢a(PB) Ep = ¢B(E),¢5(Pa), ¢5(Pa)
where ¢ 4 is an isogeny with where ¢ is an isogeny with
ker¢pa = (Pa +1aQa4). ker¢p = (Pp +rpQB)-
Ea.éa(Pp). oAMB(PA), 65(Qa)
Shared Secret: Shared Secret:
J(Wa(Ep)) where 14 is J(¥B(Ea)) where ip is
an isogeny with ker(y4) = an isogeny with ker(yp) =
(#B(Pa) + [ral - ¢B(Q4))- (pa(PB) +[rB] - 94(QB))-

Figure 15: SIDH

For SIDH to be secure the following problem must be hard:

Definition 6.1. Suppose there exists an isogeny ¢ between two elliptic curves F
and E’, where the kernel of this isogeny has size i°. The [*-isogeny problem is the
problem of finding the kernel of ¢ given only £/ and E'.

To ensure an adversary cannot compute Alice’s private key from Alice’s public
key, it is important for the 2?-isogeny problem to be hard. Similarly, to ensure an
adversary cannot compute Bob’s private key from Bob’s public key, it is important
for the 3%-isogeny problem to be hard. However, the (*-isogeny problem has been
studied by number theorists for over 20 years, and is believed to be hard for large
enough powers of [, for any natural number /.

As the public keys include extra points, the security of SIKE is actually based on
a variant of the [*-isogeny problem. This variant is still believed to be hard for large
powers of /.

Unlike ECDLP, the /¢-isogeny problem is believed to be secure even if an adver-
sary had access to a large-scale quantum-computer. A key encapsulation mech-
anism (KEM) based on SIDH titled Supersingular Isogeny-Based Key (SIKE) is cur-
rently a promising candidate for the NIST'’s standardization process for post-quantum
cryptography. For further details on this proposal, see [3].

One concern to keep in mind is that, unlike with ECDH, if both parties use long-
term (static) public keys, then SIDH is insecure. Since the framework of KEMs only
requires one party to have a long-term private/public key pair, this concern does
not apply to SIKE. For this and other security reasons we recommend using the
specifications given in [3].
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Isogeny-Based Cryptography Tutorial

In this document, we presented the introductory mathematics behind isogeny-
based cryptography, and we showed how this mathematics could be used to pro-
vide a key establishment protocol (SIDH) that is similar in structure to ECDH. De-
spite the expected downfall of classical cryptography including ECDH, isogeny-
based cryptography demonstrates that there are promising alternatives to provide
security into the quantum age.

7 About ISARA Corporation

ISARA Corporation, the world’s leading provider of agile quantum-safe security so-
lutions, leverages decades of real-world cybersecurity expertise to protect today’s
computing ecosystems in the quantum age. With our partners, we're clearing the
path to quantum-safe security for enterprises and governments by delivering prac-
tical, standardized solutions for a seamless migration. Co-founded in 2015 by for-
mer BlackBerry security executives, our team has launched several first-of-its-kind
solutions such as a quantum-safe cryptographic library, integration tools for devel-
opers, and agile technologies. With an emphasis on interoperability, we proudly
collaborate on international standards-setting efforts. For more information, visit
www.isara.com or follow @ISARACorp on Twitter.
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