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Isogeny-Based Cryptography Tutorial

1 Introduction
In this tutorial, we provide a gentle introduction to supersingular isogeny-basedcryptography. By the end of this document, the reader will have obtained a high-level understanding of themath behind this promising area of cryptography andwillhave surveyed the most important key establishment primitive based on isogeny-based cryptography.

More specifically, we organized this tutorial as follows. Wewill start with a shortdescription of elliptic curves and their scalar multiplication, which forms the foun-dation of Elliptic Curve Diffie-Hellman (ECDH). Those comfortable with the basicsof ECDH should feel free to skip to Section 4, which covers the definition of anisogeny and how an isogeny can be determined via its kernel. We will then discusshow to randomly choose kernels, and how to use the resulting isogenies to replacethe scalar multiplication in ECDH to get a new quantum-safe key establishmentalgorithm called Supersingular Isogeny-Based Diffie-Hellman (SIDH).

2 Elliptic Curves
Historically, one of the most important problems in mathematics was to describesolutions to polynomial equations. One standard problem is to find points on acurve in a plane described by a polynomial f(x, y).
Definition 2.1. By curvewewill alwaysmean the solutions of a polynomial equationin two variables. A curve of degree d will mean that the highest degree of any termin the polynomial has degree d.

If the degree of this polynomial is one, then the curve is a line and finding thepoints on a line is a trivial problem. Solving the degree two case involves investi-gating conic sections, and this problem has a well-known solution.
The degree three case, however, results in some remarkably complex and in-teresting mathematics. This mathematics gives rise to hard problems that are atthe heart of well-known classical and quantum-safe cryptographic algorithms. It isthese degree three polynomials that we will be discussing in this document.

Definition 2.2. An elliptic curve is a curve defined by an equation of the form y2 =
x3 + ax+ b, where 4a3 + 27b2 6= 0.

The condition 4a3+27b2 6= 0 guarantees that there are no troublesome (singular)points like those given in Figure 1.
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Figure 1: A cusp and a point of self-intersection
Lemma 2.3. Given an elliptic curve y2 = x3+ ax+ b, where a and b are real numbers,
there are either one or three real roots of x3 + ax+ b = 0.

The two cases covered in Lemma 2.3 are illustrated in Figure 2.
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Figure 2: Elliptic curves with one and three real roots
Given two points on an elliptic curve, we can get a third point on the curve ina natural way, which we will call the sum of these two points. To understand this“addition" of points it is important to understand the way lines and elliptic curvesintersect. Let us begin with the most common case.

Case 1: Suppose we are given two different points P = (x1, y1) andQ = (x2, y2) onan elliptic curve E, where the line between them is non-vertical and intersects E ata distinct third point. Let R = (x3, y3) denote the third intersection point betweenthe line and E. We define the addition P +Q to be the reflection of R with respectto the x-axis, namely, (x3,−y3)—see Figure 3.
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Figure 3: Case 1
The next case covers the situation where we want to double a point, or in otherwords define P + P .
Case 2: Choose P = (x1, y1) on an elliptic curve E. The tangent line of E at

P is the line that passes through P in a way where the line has the same slope asthe curve E at the point P—see Figure 4. It is well-known that if this tangent lineis non-vertical, then it will intersect E at one other point R = (x3, y3). We define
P + P = (x3,−y3)—see Figure 4.
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Figure 4: Case 2
If the line between two different points does not intersect at a third point, then itcan be shown that the line is a tangent line to one of these two points, as is shownin Figure 5. This happens in the final case involving a non-vertical line.
Case 3: Suppose we are given two different points P = (x1, y1) andQ = (x2, y2)on an elliptic curve E, where the line between them is non-vertical and intersects Eat the point P . This happens when the line is tangent to E at P . For mathematicalreasons, we think of the line being a tangent line of E at P as implying that the lineand E have a double intersection at P , much in the same way that as we think of

y = x2 as having a double root at (0, 0). LetR = P , (the “third" point of intersection).We define P +Q = (x1,−y1)—see Figure 5.
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Figure 5: Case 3
The above cases cover all the situations where the line between two points (orthe tangent line at a point) is non-vertical. Wewill briefly discuss the situationwherethe line is vertical.
Case 4: The case where the line is vertical is taken care of by introducing aspecial point O to the points on the elliptic curve, which is called the identity of E(or the point at infinity of E) and satisfies the property P + O = P for any point

P ∈ E. This extra point does not lie in the plane. We can think of this specialpoint as being like 0, in the sense that x + 0 = x, for any real number x. The onlytime when the line between two points is vertical is if the points have the same x-coordinate. Thus, we define (x1, y1)+ (x1,−y1) = O. For this reason, if P = (x1, y1),then −P = (x1,−y1). This is depicted in Figure 6.
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Figure 6: Case 4
This addition operation is sometimes referred to as being defined by the “chordand tangent rule." Themain take-away is that there is a simplemethod to add pointson an elliptic curve that covers all the possible cases. Note that we can easily findexplicit formulas to compute addition of points in Cases 1 to 4. For more informa-tion, see [6, Section 1.4] or [5, Section 3.2].

Definition 2.4. Given a point P on an elliptic curve and a natural number n, we havea notion of (scalar)multiplication by n, which is simply summing P a total of n timesand is denoted by [n] · P . In other words
[n] · P = P + · · ·+ P︸ ︷︷ ︸

n

.
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Additionally, we let [0] · P = O and [−n] · P = [n] · (−P ). For a fixed natural number
n and elliptic curve E, we call the map [n] ·E → E that maps a point P to the point
[n] · P the scalar multiplication by nmap.

Instead of working with elliptic curves whose points have real or rational x and yvalues, classical elliptic curve cryptography assumes the points on the elliptic curvehave x and y values that are in a finite space Fp for some prime p. (The coordinates
a and b that define the elliptic curve y2 = x3 + ax + b are also in Fp.) We can thinkof Fp as simply being the numbers 0, 1, . . . , p− 1 where addition and multiplicationis done modulo p. Recall, two numbers are the same modulo p if their difference isdivisible by p.
Example 2.5. If we are working in F7, then

3 + 2 · 5 = 3 + 10 = 13 = 6.

The last step works because 13 is equal to 6 modulo 7.
The formulas that describe how to add points on the elliptic curves when thepoints are real numbers still hold when we are working with arithmetic moduloa prime p. Using this we can now explain Elliptic Curve Diffie-Hellman (ECDH), aprevalent classical key establishment algorithm.

3 Elliptic Curve Diffie-Hellman (ECDH)
First presented in 1976, the Diffie-Hellman key exchange is one of the earliest prac-tical examples of public key cryptography and allows two parties to securely estab-lish a shared secret over an insecure channel. Initially proposed in terms of naturalnumbers and exponents, we now present its more modern elliptic curve variantwhich relies upon the scalar multiplication by nmap.

Using the scalar multiplication by n map—where the points have x and y coor-dinates in Fp—we will now describe the ECDH algorithm.
Public Parameters: An elliptic curveE defined over Fp for some prime p, and a point
P on the elliptic curve (with some nice properties).
Key Generation: Alice begins by choosing a random number nA, and calculates
[nA] · P . Her private/public key pair is then (nA, [nA] · P ). Similarly, Bob begins bychoosing a random number nB , and calculates [nB] · P . His private/public key pairis (nB, [nB] · P ). Alice and Bob exchange public keys [nA] · P and [nB] · P .
Shared Secret: Both parties can now calculate a shared secret, namely [nAnB] · P.Using the point [nB] ·P that she receives from Bob, Alice computes [nA] · ([nB] ·P ).
© 2019 ISARA CORPORATION isara.com 6
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Similarly, using the point [nA] · P that he receives from Alice, Bob computes [nB] ·
([nA] · P ). Since the following equation holds:

[nA] · ([nB] · P ) = [nAnB] · P = [nBnA] · P = [nB] · ([nA] · P ),

we see they have a shared secret.
Alice Bob

Private Key: Choose nA.
Public Key: [nA] · P

Private Key: Choose nB .
Public Key: [nB ] · P[nA] · P [nB ] · P

Shared Secret: [nA] · ([nB ] · P ) Shared Secret: [nB ] · ([nA] · P )

Figure 7: ECDH
The ECDHalgorithm is summarized in Figure 7. We can also use amathematicalrepresentation to describe ECDH—see Figure 8 . Alice calculates the arrows in red,and Bob calculates the arrows in blue. In Figure 8, the dotted lines represent theparties exchanging the points [nA] · P and [nB] · P .

[nA] · P

P [nAnB] · P

[nB] · P

nBnA

nB nA

Figure 8: ECDH
The security of ECDH is based on the hardness of the following problem:

Definition 3.1. The elliptic curve discrete log problem (ECDLP) is the problem offinding a number n such that [n] · Q = P, for given points P and Q on an ellipticcurve E over Fp, provided that P is indeed a multiple of Q.
For elliptic curves over Fp where p and n are large, ECDLP is considered to be anintractably hard problem even with access to today’s most powerful supercomput-ers. Thus, revealing P and Alice’s public key [nA] · P , does not reveal Alice’s privatekey nA. Similarly, revealing P and Bob’s public key [nB] · P , does not reveal Bob’sprivate key nB. This means that given P, [nA] · P, and [nB] · P, it is computationally
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Isogeny-Based Cryptography Tutorial

infeasible to calculate the shared secret [nAnB] · P . In this sense, the security ofECDH relies on the hardness of ECDLP.
However, if an adversary had access to a large-scale quantum-computer, thenthey could run an algorithm invented by the mathematician Peter Shor which couldefficiently solve ECDLP [4]. Although this type of large-scale quantum-computer isstill years away, due to its reliance on the hardness of ECDLP, ECDH is not a long-term solution for internet security.
For this reason we introduce isogeny-based cryptography. As we will see, iso-genies provide a means to create a quantum-safe key establishment algorithm. A

quantum-safe (or post-quantum) cryptographic algorithm is an algorithm that is be-lieved to still be resistant to an adversary with access to a large-scale quantumcomputer.

4 Isogenies
The rest of this document will focus on a quantum-safe key establishment algo-rithm titled Supersingular Isogeny-Based Diffie-Hellman (SIDH). In this section weprovide a comparison between the mathematical objects used in ECDH and SIDH.These are summarized in Table 1, and we will explain them as we proceed. In Sec-tion 5 we will explain how to explicitly construct these objects. We will describe thefull SIDH protocol in Section 6.

ECDH SIDH
Quantum-Safe No Yes

Parameters Elliptic curve E over Fp, Point P (Supersingular) elliptic curve E over Fp2 ,Points PA, QA, PB, QBPrivate Key Scalar multiplication map [nA] (or
[nB]) Isogeny φA (or φB)

Public Key Point [nA] · P (or [nB] · P ) Image elliptic curve φA(E) (and two points)(or φB(E) and two points)
Shared Secret [nA] · [nB] · P = [nB] · [nA] · P j(ψA(EB)) = j(ψB(EA)) (ψA and ψB are de-termined by the private keys)
Hard Problem Given P and [n] · P, find n Given E and φ(E) (and two points), find φ

Table 1: Comparison between ECDH and SIDH
Private Keys—Replacing Scalar Multiplications by Isogenies

We would like to have a protocol similar to ECDH that is quantum-safe. We canthink of scalar multiplication as the function of the base of ECDH—see Figure 8.Unfortunately, a quantum enabled adversary could break cryptosystems based onscalarmultiplication (such as ECDH), and sowewant to usemore general functionsto construct a similar-looking algorithm that is also quantum-safe.
© 2019 ISARA CORPORATION isara.com 8
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We want these more general functions to map elliptic curves to elliptic curves.However, unlike with scalar multiplication, the starting and ending elliptic curves ofthese more general functions need not be the same. We will focus on the next typeof function, because these functions have the property that the image of an ellipticcurve is still an elliptic curve.
Definition 4.1. A rational map is a function between two curves where the coordi-nate functions are each defined by a ratio of polynomials. More formally, a rationalmap has the form

φ(P ) = φ(x, y) =

(
p1(x, y)

q1(x, y)
,
p2(x, y)

q2(x, y)

)
,

for any point P = (x, y) on the (domain) curve, where p1, p2, q1, q2 are polynomialsin two variables.
We also want our functions to preserve addition; in other words, if we add twopoints before we apply the function, we get the same result as if we apply the func-tion of the two points and then add them (that is, φ(P +Q) = φ(P ) + φ(Q)).

Definition 4.2. An isogeny φ between elliptic curves E0 and E1 is a rational map
φ : E0 → E1 that preserves addition (in technical terms, is a group homomorphism).

From now on, the only functions (or maps) that we will be dealing with will beisogenies. Far from being mysterious, isogenies have been studied extensively. Inthe following example we will see that we have already been working with them.
Example 4.3. For a fixed natural number n, the scalar multiplication by nmap is anisogeny. For example, multiplication by 2 for the elliptic curve y2 = x3 + ax+ b canbe described explicitly as follows:

[2] · (x, y) =
(
x4−2ax2−8bx+a2

4(x3+ax+b)
, (x

6+5ax4+20bx3−5a2x2−4abx−a3+8b2)y
4(x3+ax+b)2

)
.

This description of the scalar multiplication map [2] as a rational map follows fromthe description given in Cases 1-4 in Section 2, as shown in [5]. Furthermore, themultiplication by 2 map preserves addition, in the sense that
[2] · (P +Q) = [2] · P + [2] ·Q.

Therefore, since it can be defined in terms of rational maps and it preserves addi-tion, the scalar multiplication by 2 map is an isogeny.
As wementioned earlier, we would like to replace the scalar multiplicationmapsin ECDH with more general isogenies. In particular, looking at Figure 8, we want toreplace the scalar multiplication map [nA] by isogenies φA and ψA, and we want to

© 2019 ISARA CORPORATION isara.com 9
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replace the scalar multiplication map [nB] by isogenies φB and ψB. As we will seelater the isogenies ψA and ψB are equivalent to the isogenies φA and φB , respec-tively, but they start from different curves. This is depicted in Figure 9.
EA

E EAB ∼= EBA

EB

ψBφA

φB ψA

Figure 9: SIDH
Alice’s private key will essentially be the isogeny φA and Bob’s private key will bethe isogeny φB. Alice’s private key will allow her to calculate ψA and Bob’s privatekey will allow him to calculate ψB.

Public Keys—Replacing Points by Image Curves
In ECDH, the public keys and shared secret are each a single point that is theimage under a scalar multiplication map. For example, Alice’s public key is thepoint [nA] · P, which is the image of P under the scalar multiplication map [nA]. Inisogeny-based cryptography, the public keys and shared secret will no longer be asingle image point like in ECDH. The public keys will each include the image curveunder an isogenymap (the shared secret is a bit more involved, as wewill see later).For this reason it is important to know what the image of an isogeny looks like.

Proposition 4.4. Every isogeny maps an elliptic curve onto the image elliptic curve.
(In technical terms, every isogeny is surjective.)

Thus, as the image of an isogeny is itself an elliptic curve, in isogeny-basedcryptography, the public keys will be (image) elliptic curves—see Table 1. For atechnical reason that we will explain in Section 5, each party’s public key will alsoinclude a couple of extra points.
Shared Secret—Replacing a Point by a j-Invariant

Recall that in ECDH, the two parties calculate exactly the same point ([nA] · [nB] ·
P = [nB] · [nA] ·P in Figure 8) to extract the shared secret. Unfortunately, in isogeny-based cryptography, the image elliptic curves (EAB andEBA in Figure 9) that the twoparties calculate during the shared secret step might not be identical. Although theimage elliptic curves are different—in the sense that they are defined by differentpolynomial equations—they are still structurally essentially the same. We can for-malize this notion of “structurally identical" using the following definition.
© 2019 ISARA CORPORATION isara.com 10
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Definition 4.5. An isogeny between two elliptic curves φ : E0 → E1 is called an
isomorphism if it is a one-to-one function, (also known as an injection). Two ellipticcurves E0 and E1 are isomorphic if there is an isomorphism between them.
Remark 4.6. It is a well-known fact that two curves are isomorphic if and only ifthey have an inverse function between them that is also an isogeny. This fact hasthe consequence that two isomorphic elliptic curves have the same curve structureand addition structure.

We now introduce a number, called the j-invariant, that we attach to each ellipticcurve. This number can be used to determine if two elliptic curves are isomorphic.
Definition 4.7. Given an elliptic curve E : y2 = x3 + ax+ b, the j-invariant of E is thevalue

j(E) = 6912a3

4a3+27b2
.

Proposition 4.8. Two elliptic curve are isomorphic (over the algebraic closure) if and
only if they have the same j-invariant.

Although, the image elliptic curves (EAB and EBA) that the two parties calcu-late in SIDH during the shared secret step might not be identical, they are alwaysisomorphic. Since Proposition 4.8 gives a simple way to detemine if two ellipticcurves are isomorphic, the shared secret in isogeny-based cryptography is chosento be the j-invariant of the image elliptic curves that the two parties calculate—seeTable 1 and Figure 10.
EA

E
EAB ∼= EBA

j(EAB) = j(EBA)

EB

ψB
φA

φB
ψA

Figure 10: SIDH
Constructing the Private/Public Keypair

To use isogenies in a cryptographic algorithm, we need to be able to chooserandom isogenies as private keys. Efficiently randomizing these private keys inisogeny-based cryptography is done using the notion of the kernel of an isogeny,which we will now introduce.

© 2019 ISARA CORPORATION isara.com 11
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Definition 4.9. The kernel of an isogeny φ : E0 → E1, denoted kerφ, is the set ofpoints that map to the identity of E1, namely,
kerφ = {P | P ∈ E0 and φ(P ) = O}.

Intuitively, we can think of the kernel as the inverse image of O.
As multiplication by n is a very important isogeny, we give a separate definitionfor its kernel.

Definition 4.10. Let E be an elliptic curve. The set of points P (in the algebraicclosure) that lie on E which satisfy [n] · P = O is called the n-torsion group and isdenoted E[n].
By the definition of the scalar multiplication map, ker[n] = E[n].
As we will see in Figure 11, the kernel is important because it gives a simple wayto define maps that are not scalar multiplication. This is possible because of thefollowing lemma.

Lemma 4.11. If two isogenies have the same kernel, then the image curves are iso-
morphic.

The object in the following definition will allow Alice and Bob to generate isoge-nies.
Definition 4.12. The set generated by points P1, . . . , Pk on an elliptic curve E is theset of points of the form [m1] ·P1+ · · ·+[mk] ·Pk , for some integersm1, . . . ,mk. Wedenote this set by 〈P1, . . . , Pk〉. An isogeny whose kernel is generated by a singlepoint is called a cyclic isogeny.

To compute her SIDH key pair, Alice will first randomly choose a point RA of acertain “size" (technically, by “size" we mean order). Alice then calculates a cyclicisogenyφAwhose kernel is 〈RA〉usingwell-knownexplicit formulas [7, Section 12.3].The pointRA, or the associated isogeny φA, will be Alice’s private key. The imageEAof φA will be part of Alice’s public key. See Figure 11 for a step-by-step description.
Private Key Public Key

Points −→ Kernels −→ Cyclic Isogenies −→ Image Elliptic Curves
RA 7−→ 〈RA〉 7−→ φA with kerφA = 〈RA〉 7−→ EA = φA(E)

Figure 11: Generating Isogenies from a Point
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Bob also chooses a randompointRB and uses this point to construct an isogeny
φB whose kernel is 〈RB〉. The point RB , or the associated isogeny φB , will be Bob’sprivate key. The image EB of φB will be part of Bob’s public key.

The question now remains, “how can we randomly choose a point?" To under-stand the answer to this question it is important to understand the structure of thepoints on the elliptic curve.

5 Explicit Constructions
In this section we would like to explicitly construct private/public key pairs andshared secrets. This requires us to understand the set of points on an elliptic curvewhich we can use to generate an isogeny.
Points in a Finite Field on an Elliptic Curve

Elliptic curve cryptography is done over finite spaces where we can performarithmetic. These spaces are called finite fields. The finite fields that are used inthis document are Fp and Fp2 , where p is a prime number. Classical elliptic curvecryptography generally uses Fp, whereas quantum-safe isogeny-based cryptogra-phy uses Fp2 .
Recall that Fp is the set of integers modulo p, for some prime p. However, Fp2is not precisely the integers modulo p2. Intuitively, Fp2 is a type of 2-dimensionalversion of Fp. More explicitly, if p is congruent to 3 modulo 4, then we can think of

Fp2 as simply being the numbers a + bi where i2 = −1 and a and b are numbers in
0, 1, . . . , p − 1 modulo p. (In isogeny-based cryptography we will always choose psuch that p ≡ 3 (mod 4).) For example, in F72 we see that

(3i)(3 + 2i) = 9i+ 6(i2) = 9i+ 6(−1) = −6 + 9i = −6 + 2i.

In isogeny-based cryptography, we will work with an elliptic curveE over Fp2 , forsome prime p of the form p = 2a3b − 1, where a and b are natural numbers. Forexample, p = 23723239 − 1 is one of the primes used in isogeny-based proposal tothe NIST quantum-safe cryptography project [3].
As we are interested in isogeny-based cryptography, we would like to have amethod to describe all the points with x and y values in Fp2 on an elliptic curve E.We actually only need to understand the points in E[2a] and E[3b] whose x and yvalues are in Fp2 . We will discuss the reason for picking points in these torsiongroups in Remark 5.1.
Both the sets E[2a] and E[3b] have a nice structure. In particular, there exist twopoints PA andQA onE that generate the setE[2a]. This means that all the points in

E[2a] can be described as [n] ·PA+[m] ·QA, for some n andm in Fp2 . (Actually thereare many choices for PA and QA, so we just fix one choice as system parameters).
© 2019 ISARA CORPORATION isara.com 13
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Similarly, there are two points PB and QB on E that generate the set E[3b].(Again, there are many choices for PB and QB , so we just fix one choice).
Constructing the Private/Public Keypair from a Seed

Suppose that Alice and Bob would like to use isogeny-based cryptography toagree on a secret key. Recall fromFigure 11 that Alice andBob eachwish to generatean isogeny from a random point. In particular, Alice will choose a random seed
0 ≤ rA < 2a. Using this she will construct the (random) point RA = PA + [rA] · QAin the torsion subgroup E[2a]. (Varying the m in description [n] · PA + [m] · QA of ageneral 2a-torsion point gives enough possible points that we do not need to vary nas well.) Alice’s public key will include the image curveEA of the isogeny φA whosekernel is 〈RA〉—see Figure 12. Alice’s private key can be thought of as rA, or theassociated isogeny φA.

Private Key Public Key
Seeds −→ Points −→ Kernels −→ Cyclic Isogenies −→ Elliptic Curves
rA 7−→ RA 7−→ 〈RA〉 7−→ φA 7−→ EA = φA(E)

Figure 12: Generating Isogenies from a Seed
Similarly, Bob chooses a random seed rB and uses it to compute a (random)point RB = PB + [rB] · QB. Bob’s public key will include the image curve EB of theisogeny φB whose kernel is 〈RB〉. Bob’s private key can be thought of as rB, or theassociated isogeny φB.

Remark 5.1. The kernels of the isogenies are of size 2a and 3b, because it is eas-ier to calculate isogenies if the size of their kernels is a power of a small prime.Additionally, for security we also want the sizes of Alice’s and Bob’s kernels to berelatively prime and reasonably large (there is a correspondence between the sizesof a and b and the corresponding amount of security of the protocol).
Computing the Shared Secret

Wewant to construct a systemofmaps as illustrated in Figure 10, where j(EAB) =
j(EBA). In particular, if we let ψA be the isogeny with kernel 〈φB(RA)〉, then a simplemathematical argument proves

ψA ◦ φB = 〈RA, RB〉.

Similarly, if we let ψB be the isogeny with kernel 〈φA(RB)〉, then
ψB ◦ φA = 〈RA, RB〉.

© 2019 ISARA CORPORATION isara.com 14
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By Lemma 4.11, as kerψA ◦ φB = kerψB ◦ φA, this proves
EAB = ψA ◦ φB(E) ∼= ψB ◦ φA(E) = EBA.

Therefore, by Proposition 4.8, j(EAB) = j(EBA)—see Figure 10. Thus, if Alice andBob follow this procedure to create ψA and ψB , respectively, then they will end upwith a shared secret, namely, j(EAB) = j(EBA).
In order for Alice to construct ψA, she will need to know φB(RA). For this reason,in addition to EB , Bob’s public key also includes φB(PA), φB(QA). More explicitly,having been given φB(PA), φB(QA), Alice can construct

φB(RA) = φB(PA) + [rA] · φB(QA).

Next Alice computes the image EAB of the isogeny ψA whose kernel is 〈φB(RA)〉.Finally, she calculates the j-invariant of EAB , which will be the shared secret. Thisprocess is summarized in Figure 13.
Bob’s Public Key Using Alice’s Private Key Shared Secret

Bob’s Public Key −→ Point −→ Kernel −→ Isogeny −→ Elliptic Curve −→ j-Invariant
φB(PA), φB(PA) 7−→ φB(RA) 7−→ 〈φB(RA)〉 7−→ ψA 7−→ EAB 7−→ j(EAB)

Figure 13: Generating a Shared Secret
Similarly, Alice’s public key is EA, φA(PB), φA(QB). Having been given φA(PB)and φA(QB), Bob can construct

φA(RB) = φA(PB) + [rB] · φA(QB).

Next Bob computes the image EBA of the isogeny ψB whose kernel is 〈φA(RB)〉.He calculates the j-invariant ofEBA, which is the shared secret. This more detailedprotocol is depicted in Figure 14.
EA

E
EAB ∼= EBA

j(EAB) = j(EBA)

EB

ker(ψB )=〈φA(PB )+rB ·φA(QB )〉
ker(

φA)
=〈PA

+rA
·QA〉

ker(φ
B )=〈P

B+rB ·Q
B 〉

ker(ψA
)=〈φB

(PA)
+rA·φB

(QA)
〉

Figure 14: SIDH
Combining these ideas we can describe the full SIDH protocol.
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6 Supersingular Isogeny Diffie–Hellman (SIDH)
In 2011, David Jao and Luca De Feo introduced SIDH, an isogeny-based version ofECDH [2], [1]. To instantiate the protocol, first fix the elliptic curve E. This ellipticcurve is chosen so that the following algorithm is not susceptible to the same typeof quantumattack—like the one by Shor—thatmakes ECDHvulnerable. In particular,we can choose E : y2 = x3 + ax + b, defined in terms of a field Fp2 for someprime p = 2a3b − 1 (although any supersingular elliptic curve would do—see [5] fora definition of supersingular). To agree on a shared secret using SIDH, Alice andBob complete the following steps:
Public Parameters: A (supersingular) elliptic curve E : y2 = x3 + ax + b defined interms of a field Fp2 for some prime p = 2a3b−1,where a and b are natural numbers.A basis PA, QA of E[2a] and a basis PB, QB of E[3b].
KeyGeneration: Alice begins by choosing a randomnumber rA between 0 and 2a−1.She calculates the isogeny φA whose kernel is generated by RA = PA + [rA] · QAusing well-known explicit formulas [7, Section 12.3]. Alice then sends the imagecurveEA = φA(E) to Bob. She also sends φA(PB) and φA(QB), which will allow Bobto construct his next map ψB. Alice’s private key is the seed rA, or equivalently, theisogeny φA. Alice’s public key is (EA, φA(PB), φA(QB)).

Similarly, Bob chooses a random number rB between 0 and 3b−1. He calculatesthe isogeny φB whose kernel is generated byRB = PB+[rB]·QB. Bob’s private key isthe seed rB , or equivalently, the isogenyφB. Bob’s public key is (EB, φB(PA), φB(QA)).

Shared Secret: Using the points that she receives from Bob, Alice computes anisogeny ψA on EB whose kernel is generated by φB(RA) = φB(PA) +[rA] · φB(QA).Alice then calculates the j-invariant of the image curve EAB = ψA(EB). Similarly,using the points that he receives from Alice, Bob computes an isogeny ψB on EAwhose kernel is generated by φA(RB) = φA(PB) + [rB] · φA(QB). Bob then calcu-lates the j-invariant of the image curve EBA = ψB(EA). Since EAB and EBA areisomorphic, they have the same j-invariant. More specifically,
j(ψB(EA)) = j(EBA) = j(EAB) = j(ψA(EB)).

Thus, they can use the j-invariants as a shared secret.
Figures 15 summarizes SIDH. However, we can also think of it more mathemat-ically, see Figure 14. These diagrams are the analogue of Figure 7 and Figure 8,respectively. In both figures, Alice calculates the arrows in red, and Bob calculatesthe arrows in blue. In Figure 9 , the dotted lines represent the parties exchangingthe public keys φA(E), φA(PB), φA(QB) and φB(E), φB(PA), φB(QA).
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Alice Bob
Private Key:

Choose 0 ≤ rA < 2a.

Public Key:

EA = φA(E), φA(PB), φA(PB)

where φA is an isogeny with
kerφA = 〈PA + rAQA〉.

Private Key:

Choose 0 ≤ rB < 3b.

Public Key:

EB = φB(E), φB(PA), φB(PA)

where φB is an isogeny with
kerφB = 〈PB + rBQB〉.

EA, φA(PB), φA(QB) EB , φB(PA), φB(QA)

Shared Secret:

j(ψA(EB)) where ψA is
an isogeny with ker(ψA) =

〈φB(PA) + [rA] · φB(QA)〉.

Shared Secret:

j(ψB(EA)) where ψB is
an isogeny with ker(ψB) =

〈φA(PB) + [rB ] · φA(QB)〉.

Figure 15: SIDH
For SIDH to be secure the following problem must be hard:

Definition 6.1. Suppose there exists an isogeny φ between two elliptic curves Eand E ′, where the kernel of this isogeny has size le. The le-isogeny problem is theproblem of finding the kernel of φ given only E and E ′.
To ensure an adversary cannot compute Alice’s private key from Alice’s publickey, it is important for the 2a-isogeny problem to be hard. Similarly, to ensure anadversary cannot compute Bob’s private key from Bob’s public key, it is importantfor the 3b-isogeny problem to be hard. However, the le-isogeny problem has beenstudied by number theorists for over 20 years, and is believed to be hard for largeenough powers of l, for any natural number l.
As the public keys include extra points, the security of SIKE is actually based ona variant of the le-isogeny problem. This variant is still believed to be hard for largepowers of l.
Unlike ECDLP, the le-isogeny problem is believed to be secure even if an adver-sary had access to a large-scale quantum-computer. A key encapsulation mech-anism (KEM) based on SIDH titled Supersingular Isogeny-Based Key (SIKE) is cur-rently a promising candidate for theNIST’s standardization process for post-quantumcryptography. For further details on this proposal, see [3].
One concern to keep in mind is that, unlike with ECDH, if both parties use long-term (static) public keys, then SIDH is insecure. Since the framework of KEMs onlyrequires one party to have a long-term private/public key pair, this concern doesnot apply to SIKE. For this and other security reasons we recommend using thespecifications given in [3].
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In this document, we presented the introductory mathematics behind isogeny-based cryptography, and we showed how this mathematics could be used to pro-vide a key establishment protocol (SIDH) that is similar in structure to ECDH. De-spite the expected downfall of classical cryptography including ECDH, isogeny-based cryptography demonstrates that there are promising alternatives to providesecurity into the quantum age.

7 About ISARA Corporation
ISARA Corporation, the world’s leading provider of agile quantum-safe security so-lutions, leverages decades of real-world cybersecurity expertise to protect today’scomputing ecosystems in the quantum age. With our partners, we’re clearing thepath to quantum-safe security for enterprises and governments by delivering prac-tical, standardized solutions for a seamless migration. Co-founded in 2015 by for-mer BlackBerry security executives, our team has launched several first-of-its-kindsolutions such as a quantum-safe cryptographic library, integration tools for devel-opers, and agile technologies. With an emphasis on interoperability, we proudlycollaborate on international standards-setting efforts. For more information, visitwww.isara.com or follow @ISARACorp on Twitter.
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